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The thermal behaviour of oscillating gas bubbles 
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Several aspects of the oscillations of a gas bubble in a slightly compressible liquid are 
discussed by means of a simplified model based on the assumption of a spatially 
uniform internal pressure. The first topic considered is the linear initial-value 
problem for which memory effects and the approach to steady state are analysed. 
Large-amplitude oscillations are studied next in the limit of large and small thermal 
diffusion lengths obtaining, in the first case, an explicit expression for the internal 
pressure, and, in the second one, an integral equation of the Volterra type. The 
validity of the assumption of uniform pressure is then studied analytically and 
numerically. Finally, the single-bubble model is combined with a simple averaged- 
equation model of a bubbly liquid and the propagation of linear and weakly 
nonlinear pressure waves in such a medium is considered. 

1. Introduction 
The considerable amount of theoretical information available on the radial 

dynamics of gas bubbles in liquids (for reviews see e.g. Plesset & Prosperetti 1977; 
Apfel 1981 ; Prosperetti 1984a, b )  has, for the most part, been obtained with rather 
crude models for the calculation of the internal pressure. In particular, very frequent 
for the case of bubbles containing mostly an incondensible gas, is the so-called 
polytropic approximation, in which the internal pressure p is calculated from p = 
P,(R,/R)~", where R is the bubble radius and K is a polytropic index. The subscript 
zero indicates equilibrium values. A notable exception is the small-amplitude case, 
for which a more complete treatment based on the conservation equations is possible 
(Devin 1959; Chapman & Plesset 1971 ; Prosperetti 1977; Fanelli, Prosperetti & 
Reali 1981 a ,  b) .  These studies have demonstrated the complexity of the factors that 
determine the internal pressure. In the nonlinear case, the serious limitations of the 
polytropic approximation have been investigated theoretically by comparison with 
the more sophisticated theory summarized in $2 (Prosperetti, Crum & Commander 
1988), and experimentally by a technique which is particularly sensitive to the 
energy dissipation during the radial motion (Crum & Prosperetti 1984). On the basis 
of experience with similar systems, one expects that the same sensitivity would 
be found in the study of the chaotic regime of oscillating bubbles, which has recently 
been the object of several investigations based on the polytropic approximation 
(Lauterborn & Suchla 1984; Lauterborn & Parlitz, 1988; Smereka, Birnir & Banerjee 
1987). Indeed, recent work shows that the predictions of the polytropic model are 
very different from those of a more refined one (Kamath & Prosperetti 1989). 

These considerations motivate an interest in the model studied in this paper, which 
is essentially that originally proposed in a series of papers by Nigmatulin and co- 
workers (Nigmatulin & Khabeev 1984, 1977; Nagiev & Khabeev 1979; Nigmatulin, 
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Khabeev & Nagiev 1981). The basic simplification consists of the approximation of 
a spatially uniform internal pressure. With this approximation, for a perfect gas, the 
three conservation equations for mass, momentum, and energy can be reduced to 
only one. Thus, even though numerical methods are required in general, the 
computational effort is very considerably reduced. Some results obtained with this 
model have been presented in earlicr papers (Prosperetti et al. 1988; Kamath & 
Prosperetti 1989). 

The present study has several purposes. First, the linear initial-value problem will 
be studied with particular consideration of the transient behaviour of oscillating 
bubbles ($3). Secondly, the nonlinear bubble response in the limiting cases of nearly 
isothermal and nearly adiabatic behaviour, in which explicit expressions for the 
internal pressure can be obtained, will be examined ($04 and 5 ) .  Thirdly, the validity 
of the basic approximation of the model, namely the assumption of a spatially 
uniform internal pressure, is examined ($6). Lastly, the single-bubble results are 
integrated in a simple model of a bubbly liquid and applied to the study of linear and 
weakly nonlinear pressure waves in such media. The rich mathematical structure of 
the model is reflected in several previously unnoticed features of the resulting wave 
equations ($7) .  For completeness, a summary of the model is included in the next 
section. 

2. Mathematical model 
In all of the following we assume the bubble to maintain a spherical shape. While 

this is only an approximation, it may be noted that the thermal processes of concern 
in the present study are mainly influenced by the volume variations of the bubble 
and by the heat exchange with the liquid. Hence one would not expect a large effect 
of relatively small deviations from sphericity. 

The enthalpy equation for a perfect gas may be written 

dT dp 
dt dt 

pC --- = V * ( K V T ) ,  

where p is the density, C, the specific heat a t  consta,nt pressure, K the thermal 
conductivity, and dldt the convective derivative. This equation may be written in 
an alternative form by combining it with the equation of continuity, with the result 

- + y p V * ~  dP = (Y- l )V. (KVT),  
dt 

where y is the ratio of specific heats, u the velocity field, and the relation C,pT = 

yp/(y-1) valid for perfect gases has been used. From a consideration of the 
momentum equation, it is easy to estimate that the maximum pressure difference A p  
between any two points in the bubble satisfies 

where h is a typical wavelength in the gas and M a  = R / c  is the Mach number of the 
bubble wall motion referred to the speed of sound in the gas c.  In  many applications 
R 6 A ,  Ma < 1,  so that the pressure in the bubble may be taken to be spatially 
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uniform to a good approximation. The validity of this assumption is examined in $6. 
Here we proceed to its exploitation in (2.2) which can then be integrated immediately 
to find the following expression for the radial velocity field of the gas: 

YP 
(2.4) 

Upon imposing the kinematic boundary condition u = R a t  r = R,  the following 
differential equation for the pressure is obtained : 

The temperature field must of course still be obtained from (2.1), in which the 
velocity appearing in the convective derivative is given by (2.4). In  the present paper 
we shall solve this equation subject to the boundary condition 

T(r = R(t) ,  t )  = To, (2.6) 

where To is the undisturbed liquid temperature. This is of course an approximation, 
which is however justified for gas bubbles when vapour effects are negligible as 
discussed in greater detail in Prosperetti (1986) and Prosperetti et al. (1988). 

For numerical work, and part of the following applications of this model, it is 
expedient to deal with a fixed boundary, which can be obtained by introducing the 
coordinate 

y = r /R( t ) ,  (2.7) 

in terms of which the energy equation (2.1) becomes 

where V y  indicates differentiation with respect to y. This subscript will be omitted 
henceforth. By use of (2.4) and (2.5), it is readily found that 

We shall make use of dimensionless variables indicated by an asterisk and defined 
as follows : 

1 (2.10) 
t = wt,, R = RoR,, T = TOT,, 

p = p o p * ,  K = K o K * ,  u=wRou*,J 

where w is the inverse of a characteristic time and the index 0 denotes undisturbed 
values. With these definitions (2.5), (2.8) and (2.9) become 

(2.11) 

(2.12) 

(2.13) 
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where the prime denotes differentiation with respect to the dimensionless time and 

(2.14) 

with x = Ko/po  C, indicating the thermal diffusivity, is the square of the ratio of the 
thermal penetration length ( x / w ) i  to the undisturbed radius. 

To close the model an equation for the bubble radius is necessary. For an 
incompressible liquid this equation has the well-known form 

1 

P L  
R R + g 2  = -{p,-p, [l +S(t)]} ,  (2.15) 

where p L  is the liquid density, p, the static pressure, p,S the variable pressure a t  
large distance from the bubble, and p ,  the liquid pressure a t  the interface related to 
the internal pressure p by 

(2.16) 

with a the surface tension and pL the liquid viscosity. An equation approximately 
accounting for the liquid compressibility has been obtained by Keller (Keller & 
Kolodner 1956; Keller & Miksis 1980; Prosperetti & Lezzi 1986) and is 

1-- RR+- 1--- (13,-pm[1+S(t)]}, (2.17) ( :) ;( i:) 
where cL is the speed of sound in the liquid. Consideration of the compressible case 
clarifies the meaning of p ,  S(t)  and shows that this quantity is to be understood as 
the perturbation pressure at the location of the bubble if the bubble were absent 
(Keller & Miksis 1980; Lezzi & Prosperetti 1987). 

By combining (2.15) and (2.17) - or by applying [ l -  (k/cL) + (R/cL)  d/dt)]-' to 
both sides of (2.17) and expanding in powers of c;' - i t  is possible to derive the 
equation (Prosperetti 1987) 

(2.18) RR + @  -- (R2X+ 6RRB + 2k3) = -{pB -p, [I  +s(t)]}, 

which will also be useful in the following. At first sight this equation exhibits the odd 
feature of requiring three initial conditions for its integration. Actually, this is just 
an artifact of the perturbation scheme used for its derivation (Prosperetti & Lezzi 
1986; Lezzi & Prosperetti 1987) and is of no conceptual significance. To the same 
order of accuracy in the effects of the compressibility of the liquid, an initial 
condition for R can be obtained by substituting the given initial conditions for R and 
R into (2.15). For a constant ambient pressure (i.e. S = 0) all these equations have 
the equilibrium solution 

1 1 

CL P L  

2 a  
Po = pa+--. 

RO 

The dimensionless form of the radial equation (2.17) is 

(2.19) 
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while for the interface condition (2.16) we have 

W R' 
p ,  = p g * + - + 2 M 3 ,  

R, R ,  

In the numerical examples that will be shown in this paper we have used 

S(t,) = -€sin t , ,  
with E a dimensionless acoustic amplitude. 

3. Small-amplitude motion 
In the case of small-amplitude motion, (2.11) and (2.13) become 

We set 
R, = 1 +X(t,), p ,  = 1 +P(t , ) ,  T* = 1 +Q(t , ) ,  

59 1 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(3.1) 

(3.2) 

(3.3) 

and take Laplace transforms, indicated by a tilde. The transformed equations are 
readily solved and the pressure is found in the form 

P = - P  - x+-&,. (;)- : - (3.4) 

In this expression s is the variable conjugated to the dimensionless time, the function 
P is defined by 

(3.5) P ( z )  = 3YZ 
x + 3( y - 1) (zi coth 2:- 1) ' 

and the function &,, given by 

accounts for the effect of the initial conditions (index i). In spite of the presence of 
square roots, it is not necessary to introduce branch cuts in the definition of the 
functions appearing in (3.4). 

It is useful to consider these results in conjunction with the equation of motion for 
the bubble boundary. In the present context the third-order equation (2.18) proves 
most useful because it leads to somewhat simpler expressions. Upon non- 
dimensionalization and linearization it becomes 

(3.7) 
x 
c* 

x--+22zMx'-zwx = Z ( P - S ) .  
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The term M X  accounts for energy dissipation by viscosity, while the acoustic losses 
are described by the term X / c , ,  as will be seen below. 

It is readily established that, for z+O,  

F - 3 + y - 1 2 ,  
5Y 

so that, for s+O (i.e. t + m )  we find 

The condition of mass conservation for the entire bubble, in the present dimensionless 
units, is 

3R3p y 2 F 1  dy = 1.  J: (3.10) 

Linearization of this relation and evaluation a t  t = 0 shows that the right-hand side 
of (3.9) vanishes, so that the large-time behaviour of the bubble is not affected by the 
initial conditions, as expected. From (3.4) it is further seen that the (dimensionless) 
timescale for this to happen is of the order of D-', i.e. of the thermal penetration time 
over the bubble radius. We shall not consider initial effects further, and we shall put 
0, = 0 in the following. 

The primitive of the transform (3.5) cannot be written down in a transparent form, 
but certain interesting conclusions can nevertheless be derived from (3.5) directly. 
Neglecting the contribution Qi of the initial conditions and using the convolution 
theorem, we may write 

P(t)  = - F(Dt')X(t-t')dt'. (3.11) 

When this result is substituted into (3.7), it is seen that the equation takes on an 
integro-differential structure. This memory effect is due to the diffusive nature of the 
process that determines P(t). 

Let us now consider the case in which D is large, i.e. the bubble is small compared 
with the characteristic thermal penetration length. Then the argument Dt' is large 
over most of the integration range in (3.11), and we may make use of the asymptotic 
form of F for large argument. Using (3.8) we find 

s: 

F( t )  - 36(t)--6'(t), Y - 1  
5Y 

from which, upon substitution into (3.11), 

(3.12) 

The memory effect is seen to disappear in this limit and, if the last term is 
disregarded, this result is just the linearized form of the isothermal relation pR3 = 

1 .  The equation of motion (3.7) takes the form 

(3.13) 
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I n  dimensional terms the quantity 3 - w is given by 

1 
w o - -  1H:( 3po-- :) , (3.14) 

and thus coincides with Minnaert's (1933) result for the natural frequency of an 
isothermal bubble. The second term multiplying X' accounts for the thermal 
damping in this limit and, again in dimensional form, is given by 

Y - 1  Po 
lOyp,x' 

(3.15) 

which is also a known result (Prosperetti 1984a). 

the function F is determined by the behaviour of P(z )  for large z, which is 
In  the opposite limit of very small D or, for any D ,  up to  times such that Dt 4 1, 

P(z )  - 3 ~ [ 1 - 3 ( 7 -  1 )  d ] ] .  

In this case (3.11) reduces to 

(3.16) 

which, with the neglect of the last term, is just the linearization of the adiabatic 
relation pR37 = 1.  We conclude that the initial motion of every bubble is adiabatic, 
even though the subscqucnt behaviour may be very different. This remark has a 
bearing on the normal-mode method for the calculation of the bubble's natural 
frequency during free oscillations (see e.g. Chapman & Plesset 1971). In  this 
approach one assumes a t  the outset an exponential time dependence, the complex 
frequency of which is obtained as an eigenvalue of the problem. As has been found 
in other problems in which the dynamics is governed by diffusive processes (see e.g. 
Prosperetti 1980, 1981), this approach gives the asymptotic time dependence, but 
does not fully describe the transient. I n  particular, the imposition of initial 
conditions on the solution obtained in this way may be incorrect. 

Another interesting situation arises when thc bubble is driven by an external 
sound field into oscillations which eventually become steady. To investigate this 
long-term behaviour, which with the present non-dimensionalization takes place a t  
a dimensionless frequency of unity, we multiply (3.11) by exp (-it) and find 

Pe-il = - [F(Dt') e-it'] [e-i(t-t')X(t-f)] dt', (3.17) s, 
the Laplace transform of which is 

(3.18) 

For an oscillatory motion proportional to exp (it), as t -j co , 

ecitX(t) +Xs,, e-itP(t) +Pss, 

where X,, and P,, are complex constants representing the steady-state amplitudes of 
the radial oscillations and of the internal pressure perturbations. Hence, taking the 
limit s+O in (3.18), we find 

(3.19) 



594 A .  Prosperetti 

which, in terms of P( t )  and X(t), may formally be written 

P = -Re%(i /D)X-Im~( i /D)X' .  (3.20) 

Upon also setting X"' = -X, the radial equat,ion (3.7) can be cast in the standard 
form of a driven harmonic oscillator, namely 

1 X'+Z[Re~( i /U)-w]X = -28. (3.21) 

However, it is important to stress that this analogy holds only asymptotically for 
times t + D-l, so that only in this limit does a driven oscillating bubble behave as a 
standard oscillator. Thc temperature field in the bubble in this asymptotic stage is 
given by 

y - l p  1 -  sinh (i/D)i y] 
@ = -  

Y [ y sinh (i/D)i ' 
(3.22) 

On the basis of (3.21), one can define the natural frequency of the bubble to be 
Z (ReF-w) or, in dimensional terms, 

w2 - - -"(3K-W),  P 
O - P L R i  

where the effective polytrophic index K is defined by 

K = $Rep(i/D). 

(3.23) 

(3.24) 

Since the quantity D depends on the frequency, this equation is actually implicit in 
q,. The oscillations are damped by viscosity, acoustic radiation, and thermal effects 
and the corresponding damping constants, again in dimensional terms, are 

(3.25) 

(3.26) 

(3.27) 

A more explicit expression for P(i/D) is 

where (3.29) 

The variable 7 may be considered either as a dimensionless radius for a fixed forcing 
frequency, or as a dimensionless frequency for a fixed radius. These results show 
therefore that, unlike the case of an ordinary oscillator, neither the effective damping 
nor the resonant frequency are constant but depend on the driving frequency. 

Figure 1 shows a graph of K defined by (3.24) as a function of 7 for monatomic 
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FIQURE 1.  The effective polytropic index K for linear oscillations as a function of the dimensionless 
driving frequency 7 defined in (3.29) for monatomic ( y  = f) and diatomic ( y  = 2) gases. The dashed 
horizontal lines indicate the adiabatic limit K = y .  

lo-' 

__--_______ 
lo-* 

P Im- lo-' 
7= 

lo-' 

10-6 

1 10 100 
71 

FIQURE 2. The dimensionless thermal damping function Imp/$  defined by (3.28) as a function 
of the dimensionless driving frequency 7 defined in (3.29) for monatomic (y = f, upper line) and 
diatomic (y = g, lower line) gases. The dashed lines are the first term in the approximations (3.30), 
(3.31) 

(y  = i) and diatomic (y  = g) gases. The expected behaviour a t  low frequency, K + 1, 
and at high frequency, K + y ,  are clear from this figure. Figure 2 is a plot of ImP/q2 as 
a function of 7. The asymptotic behaviour is readily obtained from (3.28) and is, for 
n + O .  

(3.30) 
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while, for r,~ --f co, 

The dashed lines in figure 2 show the leading-order term in the asymptotic relations 
for ImP.  

4. The nearly isothermal case 
When the thermal penetration length is large compared with the radius, one 

expects the temperature in the bubble to deviate little from the equilibrium value. 
In this case the parameter D defined in (2.14) is large and a perturbation solution in 
D-l may be attempted. 

Combining (2.11)-(2.13) we may write 

Here we still use dimensionless variables, but asterisks have been dropped for 
convenience. 

We now expand 

T = 1 +D-'Tl +DP2T2, ..., K ( Y )  = 1 +D-lK; Tl + ..., (4.2) 
(4.3) = ~ - 3 ( 1  + D - ~ G ,  + D - ~ G ,  + . . .), 

where Kh = [dK/dT], and the isothermal relation pR3 = 1 has been anticipated in the 
zero-order term of the expansion for p .  For the time being 12 is to be considered a? 
prescribed. In terms of the same expansions, the statement (3.10) of mass 
conservation is 

1 = 1 +D-'(G,-3 y2 Tl dy) +F2 [,,_,,, / y2Tl dy-3 1; y2(T2- T;)  dy] + . . . 
0 0 

(4.4) 
We shall also need the differential equation (2.13) for the pressure, repeated here for 
convenience : 

(4.5) 

Upon substitution of (4.2) and (4.3) into (4.1), the equation for Tl is found to be 

The solution satisfying Tl = 0 a t  y = 1 is 

from which one obtains that, for consistency, 

(4.6) 

(4.7) so that 
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Upon substitution of (4.6) into the differential equation for the pressure (4.5) one 
confirms the correctness of the zero-order relation pR3 = 1.  Because the factor D 
multiplies the temperature gradient in (4.5), the first-order correction to this relation 
requires knowledge of T2. However, the global mass conservation relation (4.4) can 
be used together with (4.7) to find 

G y - l R  
5y R 2 '  1 -  

so that, to  this order, 

For small-amplitude motion this relation becomes 

in agreement with the earlier result (3.12). 
With due consideration of (4.7) and (4.8), the equation for T2 simplifies to 

1 aT, 
-- +GlV2Tl-KhV*(TlVTl) = V2T2. 
R at 

Integrating and imposing consistency of the wall gradients as before we find 

(4.10) 

Upon substitution of this relation and of (4.6) into the pressure equation (4.5) one 
finds 

7-1 d R' G'=---- 
5y dtR2'  

which confirms the result (4.8). The final expression for T2 is 

With this result we can calculate the second-order pressure correction from (4.4), to 
find 

(4.12) 

This expression is rather cumbersome and possibly of limited usefulness. We give it 
mainly to exhibit explicitly the large numerical factor in the dcnominator, which 
suggests that  the first-order result (4.9) may be fairly accurate. 

We can check this expectation directly by comparing some numerical results 
obtained from the complete formulation of 52 with the corresponding ones obtained 
from (4.9). As a preliminary, we plot in figure 3 a graph of the relation (2.14) defining 
D as a function of R, for a gas bubble in water at 1 bar. The middle line corresponds 
to  w = wo, the resonance frequency (3.23) of the linear theory. The upper line is for 
w = 0.1 wo and the lower line for w = low,.  It is seen here that the interval of radii 
where the parameter D is large is rather restricted for frequency ranges where single- 
bubble phenomena are important, such as in acoustic cavitation. However, 
phenomena involving many bubbles, such as are encountered in bubbly liquids, often 
have characteristic frequencies much lower than those of the constituent bubbles. In  
this case i t  may be expected that (4.9) would be widely useful. 
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1 .  I '  I '  I '  I 
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I .  I .  I ,  I .  , '\I 
I '  1 ,  I '  1 .  1 

lo-4 lo-z 0. I I 10 
R,, (mm) 

FIGURE 3. The dimensionless parameter D defined by (2.14) as a function of the bubble radius 
in mm for an air bubble in water a t  normal pressure. Line (a) corresponds to a frequency equal to 
the linear resonance frequency wo given by (3.23), ( b )  w = O.lo,, and ( c )  w = low,. The physical 
meaning of D is of the square of the ratio of the thermal penetration depth to the bubble radius. 

-- 

Figure 4 refers to a 1 pm bubble (having a linear resonance frequency w0/27c = 

3.89 MHz) driven by a sound field of frequency w/wo = 0.5 and dimensionless 
amplitude E = 1. The dotted line is the result of the complete model of $2 integrated by 
means of the spectral technique described in Kamath & Prosperetti (1989), while the 
solid line is the nearly isothermal approximation (4.9). In  both cases, the initial 

FIQURE 4. Bubble internal pressure during the 18th cycle of the driving pressure as predicted by 
the complete model of $2 (dotted line) and the nearly isothermal approximation (solid line). 
The equilibrium radius is 1 pm, the frequency w/wo = 0.5, the dimensionless pressure amplitude 
E = 1 ,  D = 1.096, and the linear natural frequency is w,/2n = 3.89 MHz. 
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conditions are R(0) = 1, R'(0) = 0 and the driving pressure field has the form (2.23). 
The quantity shown in the graph is the dimensionless internal pressure p( t )  during 
the 18th cycle of the sound field, by which time the transient has essentially died out 
and a steady regime of oscillation has been attained. Since the radius is obtained by 
integrating the internal pressure twice, the latter quantity is a much more sensitive 
indication of the accuracy of the approximation than the former one. A comparison 
of the radii, rather than the pressures, would hardly show any difference for this case. 
It can be seen that the error introduced by the expansion in powers of D-' does not 
accumulate in time, but is limited to an underestimation of the peak internal 
pressure. This discrepancy is in the direction expected. Indeed, a characteristic 
feature of large-amplitude oscillations is the suddenness of the collapse phase. This 
implies that the timescale for the compressive heating of the gas is shorter than the 
sound period, so that the 'effective' value of D is smaller than anticipated on the 
basis of the linear theory. Hence, a greater heat transfer rate is predicted in the 
approximation than can actually occur, the bubble is colder than it should be, and 
the peak pressure smaller. Nevertheless, considering the fact that the value of D for 
this case is only D = 1.096, it may be concluded that the approximation works 
remarkably well. 

In conclusion, it may be useful to give the dimensional form of the approximate 
pressure relation (4.9), which is 

y - m ;  1 dR 
Po 

(4.13) 

5. The nearly adiabatic case 
Another situation which is amenable to analytical investigation is that in which 

the parameter D is very small so that most of the gas in the bubble is thermally 
insulated from the liquid. This case has been investigated by Miksis & Ting (1984, 
1987). We shall present here a different derivation of their results based on the model 
of $2. 

To lowest order in 6 = Di, the energy equation (2.11) reduces to 

paT 7-1 
-- = ----p'+0(62). 
Tat y 

For an initial condition of uniform temperature and equilibrium pressure, the 
solution is 

T = py-''Y + O( 6') , 

i.e. the gas behaves adiabatically as expected. To the same approximation, the 
pressure equation (2.13) gives 

p R a Y  = 1 + 0 ( S 2 ) .  (5.3) 
Since (5.2) cannot satisfy the boundary condition T = 1 at r = R, a boundary layer 

must be present near the bubble surface. To resolve this layer we introduce the 
stretched variable 

z=- 1 - Y  
6 '  

and note that, from (2.12), 
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so that u = R’+O(S) 

in the boundary layer. Following now Plesset & 
stretched Lagrangian variable 

Zwick (1952), we introduce the 

7 = E r P p d r  47c = 4nR3Lpdz+0(6) ,  

r 

in terms of which the energy equation (2.11) becomes 

The substitution 

and the relation p = p / T  bring this into the form 

T = pY-’h‘$, (5.4) 

a13 
at 

The new time variable 

7 = ( 4 7 ~ ) ~  [p( t ’ )R4( t ’ )d t ’  (5.5) 

eliminates the function of time multiplying the right-hand side. Miksis & Ting (1984) 
further assume K / T  = 1, which is justified on the basis of the corresponding 
approximation p cc T of compressible boundary-layer theory, together with the near 
constancy of the Prandtl number for many gases. Fokas & Yortsos (1982) have 
investigated the most general parabolic equation that can be reduced to the standard 
heat equation by a Backlund transformation, and on the basis of their results it 
appears that the case KIT = 1 is the only one of physical interest. Making then this 
assumption, we reduce the previous equation to 

with the boundary conditions 

8 ( 7 = 0 , ~ ) = p - ( Y - ~ ) / Y ,  8 ( 7 + 0 0 , 7 ) =  1, 

which are a consequence of (2.6) and (5.4). The initial condition we shall consider is 
I3 = 1, which corresponds to the equilibrium state. The solution of this diffusion 
problem is immediate and in particular one finds 

(5.7) 

In terms of ( 7 , ~ )  the pressure equation (2.13) may be written 

This relation shows that pB3y = 1 + 0(6) ,  which can be used to  express p in the right- 
hand side with the result 

- d (pR3Y) = -zglv-o + o(6’). 
dr  
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FIQURE 5. Internal pressure versus time during the first, (a) and 30th, (b) cycle of the driving 
pressure as predicted by the complete model of $2 (continuous line), the implicit nearly adiabatic 
approximation ( 5 4 ,  (5.8) (dotted line), and the explicit nearly adiabatic approximation (5. lo), 
(5.11) (dash-and-dot line). The equilibrium radius is 100 pm, the frequency w / w o  = 0.55, and the 
dimensionless pressure amplitude E = 0.5. This is the same case as figure 6(a)  of Miksis & Ting 
(1987). D = 0.0208 and the linear natural frequency w,,/Za = 31.2 kHz. 

Upon substitution of (5.7) and integration subject to R(0) = 1, p(0) = 1 ,  we find 

pR3y = 1 + 3 Y ~ ~ ~ ~ - ( Y - l ) / Y ( r - s ) -  47t x l]s-fds+O(D). 

The expression obtained by Miksis &, Ting (1984) is 

(5.9) 

and, raised to the power y ,  coincides with (5.8) up to order Di. The memory effect 
expected on the basis of the linear analysis is apparent from these results. 

To a consistent order in 13, one can obtain an explicit expression for the pressure 
by using, in the integral term, the lower-order approximation p = R - 3 y  to find 

(5.10) 

The same substitution can be made in the definition (5.5) of the auxiliary time 
variable 7 to find, to the same approximation, 

7 = ( 4 ~ ) ~  R4-37(t') dt'. (5.11) 

As before, we now examine the validity of these approximate results by a 



602 A .  Prosperetti 

0.9 

0.8 

0.7 

0.6 I I I I I I 

t* 
FIQURE 6. Radius versus time for the case of figure 5. The continuous line is the complete 

model of $2,  the dotted line the implicit nearly adiabatic approximation. 

comparison with the complete formulation of 82. From figure 3 it is seen that the 
parameter D tends to be rather small over a wide range of radii and frequencies. 
However, the expansion is in terms of Di, rather than D, and this circumstance 
reduces the accuracy of the approximation. Figure 5 shows the internal pressure 
versus time in the forced oscillations of a 100 pm bubble during the first (figure 5a)  
and the thirtieth (figure 5b) cycle of the driving pressure for the same case shown in 
figure 6 (a) of Miksis & Ting (1987). The linear resonance frequency of the bubble is 
w0/2x  = 31.2 kHz, and the sound field has a frequency w/wo = 0.55, so that D = 
0.0208, Di = 0.144. The dimensionless driving pressure amplitude is E = 0.5 and the 
initial conditions are R(0)  = 1 ,  R’(0) = 0. The continuous line is the result given by 
the complete model of $2, the dotted line is the implicit nearly adiabatic 
approximation (5.8), and the dash-and-dot line is the explicit nearly adiabatic 
approximation (5.10). It is seen that both approximations work fairly well during the 
first cycle. The explicit one, however, deteriorates rapidly owing to an accumulation 
of error and becomes useless after a few cycles. As for the implicit approximation, its 
difference with the complete model in figure 5 ( b )  is somewhat obscured by the 
logarithmic ordinate scale, but it is fairly substantial. For example, the peak pressure 
is about 25% smaller than that given by the complete model. To get a better idea 
of the limits of this approximation, it is useful to consider the R(t)-curves for the two 
models, which we do in figure 6. It is seen here that the approximation (dotted line) 
predicts a larger bubble radius than the complete model (continuous line), 
consistently with the prediction of a lower pressure. 

A striking result reported by Miksis & Ting (1987) is a marked increase of the 
average radius of the bubble. They found that in some cases the average radius 
stabilized after several tens of cycles while, in others, the gradual increase caused 
some sort of threshold to  be exceeded and the bubble entered into very large- 
amplitude oscillations thereafter. To examine this process we have calculated the 
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FIQURE 7. Running average of the radius from the previous figure. The continuous line is the 
complete model of 5 2, the dotted line the implicit nearly adiabatic approximation. 

running average of R(t) for the case of figure 6, and in figure 7 we compare the results 
of the complete model (continuous line) with those of the implicit nearly adiabatic 
approximation (dotted line). It is seen that the latter predicts a much greater 
increase than the former. This difference is probably due to an error in the total gas 
mass contained in the bubble arising as an artifact of the approximation. In other 
words, if one were to calculate the total mass contained in the bubble by carrying out 
the integration in (3.10) with the temperature field given by (5.2) and (5.6), one 
would find a result greater than 1. This hypothesis is based on the fact that the 
present model is very sensitive to mass errors. For example, our early numerical 
attempts with the complete model of $2 were plagued by apparent changes in the 
average radius that were invariably found to be associated with a loss or gain of mass 
arising, in that case, from numerical inaccuracies (Prosperetti et al. 1988). The 
spectral technique used for the calculations reported here conserves mass to 
approximately 1% in all the cases that we have tested. 

Even though our calculations based on (5.8) produce an increase of the average 
radius greater than the complete model, this increase is substantially smaller than 
the one reported by Miksis & Ting (1987) for the same cases. The fact that their 
pressure equation has the form (5.9) rather than (5.8) is inconsequential as we have 
tested both forms and found indistinguishable results. We believe that their results 
are affected by a gradual accumulation of numerical error due to the use of an 
insuficiently accurate numerical technique. They used a three-point finite-difference 
interpolation of the pressure to calculate the integral (5.8) together with a predictor- 
corrector method. We have instead used cubic splines with iteration until 
convergence. Our experience is that the numerical treatment of this problem is quite 
delicate and that, for example, if linear interpolation is used instead of cubic splines, 
the results are quite different. Similarly, by relaxing somewhat the convergence test 

20 FLM 222 
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for the iterations of the time-stepping algorithm, we also found rapidly growing 
solutions. Use of the explicit approximation (5.10) had the effect of causing a greater 
average radius and occasional threshold-like phenomena similar to those reported by 
Miksis & Ting. 

The previous comments are based on a number of tests that we have run of which 
figures 5-7 are one example. The results of a more extensive comparison will be 
presented in a separate study (Kamath, Oguz & Prosperetti 1990). We note however 
that this point is somewhat academic in that the mathematical structure of the 
nearly adiabatic approximation leads to a much more complicated computational 
problem than the complete formulation of $2, for which the spectral method is quite 
accurate and of straight-forward application. Furthermore, the integral over the past 
history of the pressure that appears in (5.8) requires longer computational times than 
the spectral method as soon as results for more than a few cycles are desired. On the 
other hand, computation times for the first few cycles are of the order of 2-3 minutes 
anyway and therefore, in practice, there is no compelling reason for selecting the 
adiabatic approximation over the exact formulation. While interesting, therefore, 
the approximate results (5.8) or (5.9) appear in the end to be of limited practical 
usefulness. 

6. Accuracy of the uniform-pressure approximation 
The approximation of uniform internal pressure used in $2 can be viewed in the 

context of a perturbation approach which is useful to  judge its accuracy. Define 

(4A2Po Ma2 = 
Po 

where the subscript 0 indicates dimensional equilibrium quantities. Since the speed 
of sound in the gas is of order of (p,/po)t, the quantity defined by (6.1) is of the order 
of the Mach number in the gas for radial oscillations with an amplitude of order R,. 
For a bubble at resonance, it is seen from (3.23) that 

Po 
PL 

Ma2 = ( ~ K - w ) - ,  

which is a quantity of order lop3 a t  normal temperature and pressure. This argument 
suggests the existence of a useful parameter range in which the oscillations of the 
bubble have a large amplitude, although the gas Mach number is small. It is easy to 
show that, in these conditions, the approximation of uniform pressure is quite 
justified. 

With the definition (6.1) the dimensionless momentum equation in the gas 
becomes 

while the conservation equations for mass and energy are 



The thermal behaviour of oscillating gas bubbles 605 

I00 

10 

E 

E 
E 
a 

1 

0.1 

FIGURE 8. The dashed line (right vertical scale) is the internal pressure versus time during the first 
cycle of the driving pressure predicted by the complete model of $2. the continuous line (left 
vertical scale) is the pressure difference between the bubble’s centre and surface obtained from 
(6.11). The bubble’s equilibrium radius is 100 pm, the frequency w/wo = 0.8, and the dimensionless 
pressure amplitude e = 1. The linear natural frequency is w0/2n = 31.2 kHz. 

If now an expansion in terms of Ma2 is carried out : 

p ,  = p +Ma2p, +Ma4p2 + . . . , (6.6) 

p* = p+Ma2p,+ ..., (6.7) 

u, = u+Ma2u,+ ..., (6.8) 

we find the momentum equation, to order zero and Ma2:  

-- ap - 0 ,  
ar* 

(6.10) 

respectively. Equation (6.9) justifies the assumption made in $2 for Ma2 small. With 
this, the energy and continuity equations reduce to  the form used in $2 to lowest 
order in Ma2. 

This formulation can be used to  calculate the correction p ,  to the uniform-pressure 
approximation. Upon integration of the first-order correction (6.10) to the 
momentum equation from r,  = 0 to T* = R(t,) we obtain the following expression for 
the pressure difference between the centre and the wall of the bubble normalized by 
the lowest-order approximation p obtained from (2.13), 

The continuous line in figure 8 shows a graph of this quantity versus time for a typical 
case of a bubble with a radius of 100 pm (u0/27t = 31.2 kHz) driven at  a frequency 
o / w o  = 0.8 by a sound field with a dimensionless pressure amplitude e = 1. The 

20-2 
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dashed line (right vertical scale) is a graph of p( t*) ,  while the continuous line (left 
vertical scale) shows A in the coursc of the first oscillation. It is seen that this ratio 
is always very small even though the internal pressure reaches quite high levels. A 
contributing factor is that, during the phase of more violent motion in which the error 
tends to increase, the bubble is being compressed so that the temperature rises and 
with it the speed of sound. The instantaneous value of the Mach number is thereby 
reduced and the pressure gradients mitigated. 

The previous considerations furnish only a partial estimate of the error incurred in 
assuming a spatially uniform internal pressure. Indeed, from a knowledge of (6.11), 
no information is obtained on the absolute level of the correction p , ,  for which the 
complete first-order problem in Mu2 must be solved. This consists of the first-order 
equations for momentum, (6. lo), mass, and energy : 

aP1 -+V,.(pu1+p,u) = 0, at* (6.12) 

(6.13) aP1 aP -+ u A+ y(pl V* * u +pV, *ul) = yDV, * (K ,  V, T+KV, Tl). 
at, ar 

To these, the equation of state 
Pl= PTl+PlT (6.14) 

must be added. A solution in the general case can only be obtained numerically. Here 
we shall consider the linearized problem, which can be handled analytically, and 
from which some useful indications can be obtained. The equations to be solve are, 
upon dropping the asterisks for simplicity, 

aP1 - + V * u ,  = 0, 
at 

(6.15) 

(6.16) 

+ yV - u, = yDV2Tl, (6.17) 

Pl  = P1+ TI. (6.18) 

These equations are obtained from (6.10) and (6.12)-(6.14) by neglecting all terms 
that contain products of first-order quantities in the radial displacement of the 
bubble interface. I n  the linear approximation, and for steady oscillations with a unit 
dimensionless frequency, the non-dimensional form of the velocity (2.4) is 

at 

(6.19) 

where P is the dimensionless pressure disturbance defined in (3.3). Upon substitution 
into (6.16) and integration we find 

r2 

6Y 
p =--l'-iD(T-l)+C, (6.20) 

where C is an integration constant. An equation for this quantity can be obtained in 
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the form of a consistency condition by requiring that the first-order correction u1 to 
the radial velocity vanish a t  the bubble boundary. Upon integrating (6.15) and 
imposing this condition we find 

i L r 2 p l d r  = yD- ?Il (6.21) 

The integral can be calculated by use of (6.20) and the linearized equation (3.1) 
satisfied by the zero-order temperature field to find 

(6.22) 

It is now necessary to calculate T, to obtain from this equation the final expression 
for C. To this end we eliminate V - u ,  between (6.15) and (6.17) to find 

(6.23) iT, = Y - 1  -ip, +DV2T,, 
Y 

which is formally the same as (3.1) satisfied by the corresponding lower-order 
quantities. We substitute (6.20) and solve the equation subject to Tl = 0 at the 
bubble wall. Upon substitution into (6.22), the following expression for C is found 

l r2S(r) dr) + 3DX+ 3i( y - 1) D 

C =  , (6.24) 

where S(r)  = rsinh (r(i/D)$/sinh (i/D)f. Since the interest here is to compare the 
magnitude of pl with that of the first-order pressure disturbance P, it is useful to 
express the dimensionless radius perturbation X in terms of P by use of (3.19). Upon 
carrying out the integrals, we then have the final result 

where 

DC(z) = 1+3-(z~cothd-l). Y-1  
Z 

From (6.20), the value of p, a t  the bubble's centre is then 

(6.25) 

(6.26) 
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FIGURE 9. The effective polytropic index K for linear oscillations of figure 1 (G, = 0) is compared 
with the results of Prosperetti (1977) obtained without the uniform-pressure approximation for (a) 
monatomic (y = 8) and ( b )  diatomic (y = i )  gases. The values of G ,  defined by (6.30) are 
lo-’, and 0. 

which, for small D, is 

while, for large D, 

(6.27) 

(6.28) 

The two asymptotic limits are numerically quite close, of order 10-1 for both y = 8 
and = $, and the complete function (6.26) varies little between them. These small- 
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amplitude results suggest that the error in the value of the pressure a t  the bubble’s 
centre introduced by the assumption of uniform pressure is small and does not 
significantly depend upon the bubble radius or sound frequency. Furthermore, again 
in the linearized approximation and for sinusoidal oscillations, an analytic expression 
for the quantity A defined in (6.11) is readily obtained, 

a function that goes from - i / y  a t  small D to -i at large D, with a minimum in 
between. Hence, the error in the total pressure difference across the bubble is also 
small. 

In  this linear case a more direct assessment of the error introduced by the 
approximation of uniform internal pressure is possible by comparing the expressions 
of K and I m P  given in $3 with earlier results (Prosperetti 1977) in which this 
approximation was avoided and the momentum equation in the gas solved exactly. 
Those results were presented in terms of two parameters G, and G, which, in the 
notation adopted in this paper, are 

(6.30) 

The parameter G ,  can readily be shown to be of the order of the ratio of the molecular 
mean free path to  the wavelength in the gas, and is therefore very small. The value 
G ,  = 0 corresponds to  a spatially uniform pressure. We compare in figures 9(a)  and 
9(b)  the approximate results of $3 for the polytropic index (G,  = 0) with the more 
complete ones of Prosperetti (1977) for G, = lop7, and for y = and 8. 
Similar information for I m p  is not presented because the results are indistinguishable 
from those shown in figure 2. It is clear that  the differences between the two results 
are small and confined to very high frequency. For the case of free oscillations, the 
results of Prosperetti (1977) coincide with those of Chapman & Plesset (1971) who 
calculated the natural frequency by a normal-mode approach. 

Since, as noted above, the quantity Ma has the physical meaning of the gas Mach 
number for oscillation amplitudes of the order of the equilibrium radius, the previous 
considerations do not necessarily extend to  the case of the catastrophic collapse of 
cavitation bubbles during which the radius can undergo an order-of-magnitude 
decrease. The approximation of uniform pressure may be poor in these conditions. 

7. Weakly nonlinear waves in a bubbly liquid 
As an application of the theory developed in the preceding sections we consider a 

simple average-equation model of a bubbly liquid in one space dimension. The model 
consists of a continuity equation for the liquid phase, 

a a 
-bL(1-a)]+--[PL(l-a)v]  = 0, at aZ 

a conservation equation for the bubble number density n, 

an a 
-+-(nv)  = 0, 
at aZ 
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and a momentum equation for the mixture, 

av aP (E a,) aZ p L ( l - a )  -+v- +--0 .  (7.3) 

In these equations a is the gas volume fraction, 

a = (7.4) 

v is the common (average) velocity of liquid and bubbles, and P is the average 
pressure in the mixture. This is essentially the same as the model proposed by van 
Wijngaarden (1968), and later re-examined by Caflisch et al. (1985). Its validity is 
restricted to the case of small gas volume fractions, for which the assumption of zero 
relative velocity is accurate as shown by Caflisch et al. (1985). In writing the 
preceding equations, the assumption has been made that all the bubbles have the 
same undisturbed radius. For its closure, the model requires an equation for the 
radial motion of the bubbles. For simplicity, we use the Rayleigh-Plesset equation 
(2.15) in which the time derivatives are turned into convective derivatives with 
velocity v and the ambient pressure is identified with the average pressure in the 
mixture. i.e. 

This identification, which is one of the key aspects of the model, was first introduced 
by Foldy (1945) in the linear theory of multiple scattering. 

We consider the linear case first and we use the earlier result (3.4) to express the 
internal pressure. A straightforward procedure of elimination leads to the equation 

where w has been defined in (2.20) and, as before, R = Ro(l +X). The quantity F*(7) 
is the inverse of 9 given in (3.5) and I ( z ,  t)  is defined by 

I = Qi(z, t’) dt’, 

with Qi given in (3.6), and accounts for the initial conditions of the bubble motion. 
The presence of the convolution integral is a striking feature of this equation that has 
not been noticed before owing to the oversimplified models of the bubble response 
contained in earlier models. To establish the connection with more familiar forms, we 
consider the case in which the relation between P and X can be approximated by the 
steady-state relation (3.20). As shown by (3.12), this form holds in the nearly 
isothermal case, and it may be a good approximation for nearly monochromatic 
waves. With this simplification, the preceding equation becomes 

L 
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where W i  = 3 K - W ,  (7.8) 

is the dimensionless linear frequency. The last two terms, arising from damping and 
radial inertia, have dispersive character. If they are disregarded for a moment, the 
velocity of linear waves c, can be read directly from the equation and is 

For isothermal bubble motion and no surface tension effects it reduces to the well- 
known result (van Wijngaarden 1968, 1972) 

Po c& x 
ao(1- ao) PL . 

To treat the weakly nonlinear case it is useful to introduce dimensionless variables, 
denoted by an asterisk, by writing 

z = (c , /w)z* ,  n = non*, B = p a p * ,  

v = aoc,v*, a = a,a,, 

while the other variables are non-dimensionalized as in $2. We shall also assume that 
the bubbles’ internal pressure may be written as 

(7.10) 

where Jlr is an operator. This form is motivated by the two approximate results (4.9) 
and (5.8) valid in the nearly isothermal and nearly adiabatic limits, respectively. 
Upon combining (7.1) and (7.2), the previous model may be written, in dimensionless 
form 

Furthermore, 

(7.11) 

(7.12) 

(7.13) 

where (7.15) 

may be considered a measure of the effect of the inertia of the radial motion. 
Let now E + 1 be a measure of the strength of the wave and write 

v* = Ev*, P* = I+&*, R, = i + e ~ , ,  n* = I + ~ v * .  (7.16) 

Since the model is only applicable for small volume fractions, we can also assume 
a. < O ( E ) .  To study the weakly nonlinear case, we expand everything in E ,  retaining 
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terms up to order c2. To write the resulting equations in a more compact form it is 
useful to define 

- N  - = N 0 X + s N 1 X ,  (7.17) 

where No and N, are linear operators. With the previous steps we finally find, upon 
dropping asterisks for convenience, 

: (3 
(7.18) 

ax av ax 
3- - -= -33s (N+2X) - - ,  

at a Z  at 

av 
at aZ 

w: av aP 
q 1 - W )  at a2 

(7.19) - aN 
-a0-, -- 

+--0,  (7.20) -- 

a2x 3 ax 
5 2 2 ~ + w : x + N o x + m - + ( l - w ) F  = € - 5 2 2  x -+-  - { [ at2 2 (  a t 1 1  

a2x ax 
at at 

at 

where 

By considering linear waves progressing to the right with unit dimensionless velocity 
(i.e. a dimensional velocity equal to c,) in an otherwise undisturbed mixture, it is 
easy to show from these relations that, to  lowest order, 

N = O+O(s) ,  P - -  02, V = k + O ( e ) ,  
3 ( 1 - ~ )  

(7.22) 

where k is a constant. From the second of these relations it also follows that, for right- 
going waves (Broer 1964), 

v = 0+0(€2) ,  ) (P + :) (p - 3(1-w) w2 
(7.23) 

from which an expression for aV/az can be obtained. Upon substitution into (7.18) 
we find, to a consistent order, 

z---&+2z) ax I - w  aF aF = --2€x-. ax 
at 

(7.24) 

The average pressure P can now be taken from the radial equation (7.21) and 
substituted here to find 

=-2€x-+-  - + 2 -  - 5 2 2  x-+- - 
at w: at at 
ax 

(a  iZ){ [ 5 ;(:)'I 
(7.25) 
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If we only consider right-going waves then, for any quantity q, (a /a t  + a/az) q = O(E).  
Using this remark, the right-hand side of the preceding equation can be simplified by 
writing a p t  + 2a/tlz x a/&. Furthermore we introduce a reference frame moving to 
the right with the velocity of linear waves and defined by x = z - t  to  find the final 
result 

It is readily checked that, in the linearized limit and withM = 0, No = 0, Nl = 0, this 
equation is strictly hyperbolic so that initial conditions on X, CIX/at, and CI2X2/at2 are 
necessary and sufficient to  determine a unique solution. The first two are obvious. 
The third may be obtained from the initial condition on the pressure field through 
the radial equation (7.21). 

The wave equation (7.26) can be studied in different limits. Here we shall only 
consider the limit resulting in a modified Korteweg-De Vries equation. To this end 
we assume that both Q2 and damping effects are small, of order E or smaller. Since 
phenomena in bubbly liquids are typically relatively slow owing to the high inertia 
and high compressibility, the typical frequency of the wave entering the definition 
(2.22) of M is likely to  be small and M << 1 is not a very severe restriction. From the 
explicit expressions given below for No, it will be seen that thermal damping is also 
small for nearly adiabatic or nearly isothermal oscillations. From the expression (7.9) 
for c, and the definition (7.15) of Q, it is seen that this quantity is of the order of 
pL(wRo)2/po,  and therefore small a t  frequencies much smaller than the resonance 
frequency of the bubbles. One is thus led to the conclusion that the Korteweg-De 
Vries limit is a meaningful one for (7.26). Phenomena for which other limits might 
possibly be more appropriate could be strong shock waves, for which the timescales 
for the bubble motion may be short. In  such cases, however, the slip between the 
bubbles and the liquid could also be important, and the averaged-equation model 
(7.1)-(7.3) might be invalid. 

With the further observation that 

we obtain from (7.26) 

ax ~2 a3x ~a2x i a ax 
at ax 2w;ax3 o: ax2 2 4 a X  

E ( [ + l ) X - + - -  = ------.croX. _- (7.27) 

The left-hand side of this equation is in the standard KdV form, while the right-hand 
side accounts for dissipative effects. As for the operator No, in the nearly isothermal 
case, upon comparison of (7.10) and (7.17) with (4.9), we have K = 1 and 

(7.28) 

Thus, in this limit, thermal damping results in a term with the same mathematical 
structure as viscous damping and (7.27) becomes an equation of the Korteweg-De 
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Vries-Burgers type. In the opposite, nearly adiabatic, limit, from (5.8) we have K = y 
and 

ds 
ST 

N 0 X  =-9y(y -1 )  X ( x + t , t - s ) 7 ,  (7.29) 

which could have been written down directly from (3.16). 
Following a method proposed by Gorschkov, Ostrovsky & Pelinovsky (1974), one 

can find an approximate solution of (7.27) in the form of an attenuating soliton. To 
this end, start with the ansatz 

(7.30) 

where A ( t )  is a slowly varying amplitude function. For A constant, this is the well- 
known solitary-wave solution of the KdV equation, i.e. (7.27) with a vanishing right- 
hand side (Whitham 1974). Upon substitution of this expression into (7.27) and 
integration over x between -a and co, the second and third terms vanish by 
symmetry and one is left with 

(7.31) 

Upon substitution of (7.30) the first and second integrations can be carried out with 
the result 

(7.32) 

In  the nearly isothermal case, .No is given by (7.28). The integral gives a contribution 
similar to the viscous one and the final result is 

dt 15 

which can be integrated immediately to find 

(7.33) 

(7.34) 

The amplitude of the wave is seen to undergo a decrease at a rate that increases with 
the initial arnplitudc. I n  the nearly adiabatic case it does not seem possible to carry 
our the integration in closed form and the resulting integro-differential equation for 
A must be solved numerically. Since, however, phenomena in bubbly liquids tend to 
occur on timescales slower than the natural period of the individual bubbles, in 
practice the nearly isothermal case should be encountered more frequently than the 
nearly adiabatic one. 

Some numerical results on the propagation of shock waves in a bubbly mixture on 
the basis of a model close to that of (7.1)-(7.5) used in this section have been 
presented in Prosperetti & Kim (1988). The differences between the two models are 
mainly in the inclusion of liquid compressibility and the use of the linearized form 
of some convective time derivatives and are therefore minor. Those results 
demonstrated the major effect of the thermal behaviour of the gas on the structure 
and evolution of the waves. 
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